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Abstract. Using then-particle periodic Toda lattice and the relativistic generalization due to
Ruijsenaars of the elliptic Calogero–Moser system as examples, we revise the basic properties of
the B̈acklund transformations (BTs) from the Hamiltonian point of view. The analogy between
the BT and Baxter’s quantumQ-operator pointed out by Pasquier and Gaudin is exploited
to produce a conjugated variableµ for the parameterλ of the BT Bλ, such thatµ belongs
to the spectrum of the Lax operatorL(λ). As a consequence, the generating function of the
compositionBλ1 ◦ . . . ◦ Bλn of n BTs gives rise to another canonical transformation separating
variables for the model. For the Toda lattice the dual BT parametrized byµ is introduced.

1. Introduction

Bäcklund transformations (BTs) are an important tool in the theory of integrable systems [1].
Most frequently, they are understood as special mappings between solutions of nonlinear
evolution equations. The Hamiltonian properties of BTs, as canonical transformations, are
less well studied. Recent developments in quantum integrable theories [2, 3], discrete-
time dynamics [4–6] and separation of variables (SoV) [7, 8] suggest, however, that the
Hamiltonian aspect of BTs deserves more attention.

The aim of the present paper is to revise the concept of BTs from the Hamiltonian
point of view and to point out some new properties of BTs. We restrict our attention to
the finite-dimensional integrable systems and illustrate our general remarks by the example
of the periodic Toda lattice and the elliptic Ruijsenaars model. When elaborating our
approach to BTs, we have benefited greatly from the works of Pasquier and Gaudin [2],
where a fundamental relationship between the BT and Baxter’s quantumQ-operator was
discovered, and of Veselov [4], who gave us the adequate mathematical language to speak
about integrable mappings.

In section 2 we remind ourselves of the main properties of Bäcklund transformations
for Liouville integrable systems, and a new property ofspectrality is introduced. The
meaning of spectrality is elucidated by making the comparison with the Baxter’s quantum
Q-operator. It is shown that spectrality of the BT provides an effective solution to the
problem of separation of variables. In two subsequent sections we illustrate the new property
of BTs for two families of integrable many-body systems. In conclusion, section 5 contains
a summary and a discussion.
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2. Spectrality and separation of variables

Suppose an integrable system withn degrees of freedom is described in terms of the
canonical Darboux variablesX ≡ {Xi}ni=1 andx ≡ {xi}ni=1, with the Poisson brackets

{Xi,Xj } = {xi, xj } = 0 {Xi, xj } = δij (2.1)

and functionally independent commuting HamiltoniansHi ≡ Hi(X, x)
{Hi,Hj } = 0 i, j = 1, . . . , n. (2.2)

For our purposes it is convenient to think of a BT as a canonical transformationBλ
from the canonical variables(X, x) to the canonical variables(Y, y). It is important that
Bλ depends on a complex parameterλ. We shall suppose thatBλ can be described via the
generating functionFλ(y; x) such that

Xi = ∂Fλ

∂xi
Yi = −∂Fλ

∂yi
. (2.3)

The list of properties defining a BT usually includes:
(i) canonicity, see earlier;
(ii) invariance of Hamiltonians

Hi(X, x) = Hi(Y, y) i = 1, . . . , n; (2.4)

(iii) commutativity

Bλ1 ◦ Bλ2 = Bλ2 ◦ Bλ1 (2.5)

where◦ means the composition of canonical transformations.
In the case ofalgebraically integrablesystems [9] one more property can be added to

the list:
(iv) Algebraicity. Equations (2.3) describingBλ are supposed to be algebraic with

respect toX, Y and properly chosen functions ofx andy (say, exponential or elliptic).
In the present paper, however, we concentrate on the analytic properties of BTs and

ignore their algebraic and algebro-geometric aspects.
It is important to make a clear distinction between the notion of a BT and the close

notions of integrable canonical mapping[4], or integrable discrete-time dynamics. The
latter two are defined by the properties of canonicity and invariance only, the parameter
λ being disregarded. The term ‘discrete-time dynamics’ refers usually to the case when
the canonical transformation degenerates, in a certain limit, into an infinitesimal generator
{H, ·} of a continuous Hamiltonian flow. Existence of the parameterλ is crucial for our
definition of a BT and enriches it with new properties.

Although the commutativity of BTs is traditionally proved as an independent property,
in fact it follows from the canonicity and the invariance of Hamiltonians. Indeed, as shown
in [4], any integrable canonical mapping acts on the Liouville torus as a shift (or a collection
of shifts, in the case of multivalued mappings) of the angle variablesϕi → ϕi + bi(λ). The
commutativity is then obvious.

The theory of BTs acquires a new aspect if the integrable system in question is
solvable via the inverse scattering (or inverse spectral transform) method. Suppose that
the commuting HamiltoniansHi can be obtained as the coefficients of the characteristic
polynomial

W(u, v; {Hi}) = det(v − L(u)) (2.6)
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of a matrixL(u) ≡ L(u;X, x) (Lax operator) depending onX, x and a complex parameter
u. Note that the invariance ofHi underBλ is equivalent then to the invariance of the
spectrum ofL(u), that is there exists an invertible matrixM(u) such that

M(u)L(u;X, x) = L(u;Y, y)M(u) ∀u ∈ C. (2.7)

The properties of BTs listed above are well known. Now we are going to add to the
list a new property which is the main contribution of the present paper.

(v) Spectrality. Letµ be defined as the variable conjugated toλ

µ = −∂Fλ
∂λ

. (2.8)

We shall say that the BTBλ is associatedto the Lax operatorL(u) if for some function
f (µ) the pair(λ, f (µ)) lies on thespectral curveof the Lax matrix

W(λ, f (µ); {Hi}) ≡ det(f (µ)− L(λ)) = 0. (2.9)

This spectralityproperty of BTs seems to be new, at least we failed to find it in the
literature. We have verified it for the Toda lattice and the elliptic Ruijsenaars model for
which f (µ) = e−µ (see sections 3 and 4). It seems plausible, however, that spectrality is
the property shared by BTs for a much larger class of models.

The meaning of the equality (2.9) becomes clear if we turn to the quantum case. In the
pioneering paper by Pasquier and Gaudin [2], based on the earlier treatment of the classical
Toda lattice by Gaudin [10], a remarkable connection was established between the classical
BT Bλ for the Toda lattice and the famous Baxter’sQ-operator [11]. Pasquier and Gaudin
constructed a certain integral operatorQ̂λ

Q̂λ : 9(x)→
∫

dx Qλ(y; x)9(x) (2.10)

(here and below dx ≡ dx1 ∧ · · · ∧ dxn etc) whose properties parallel those of the classical
BT Bλ. In the quantum case the canonical transformation is replaced with the similarity
transformation

Ŷi = Q̂λX̂iQ̂
−1
λ ŷi = Q̂λx̂iQ̂

−1
λ (2.11)

where the hat̂ distinguishes the quantum operators from their classical counterparts. The
correspondence between the kernelQλ(y; x) of Q̂λ and the generating functionFλ(y; x) of
Bλ is given by the semiclassical relation

Qλ(y; x) ∼ exp

(
− i

h̄
Fλ(y; x)

)
h̄→ 0. (2.12)

After publication of [2] theQ-operators have been found for a number of other quantum
integrable models [3].

The properties ofQ̂λ such as the invariance of the Hamiltonians

[Q̂λ,Hi ] = 0 (2.13)

and the commutativity

[Q̂λ1, Q̂λ2] = 0 (2.14)

reproduce the respective properties (2.4) and (2.5) ofBλ. The most interesting property
of Q̂λ, however, is that its eigenvaluesφ(λ) on the joint eigenvectors9ν of Hi andQλ

labelled with the quantum numbersν

Qλ9ν = φν(λ)9ν (2.15)
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satisfy theseparation equation, which is a certain differential or difference equation

Ŵ

(
λ,−ih̄

d

dλ
; {hi}

)
φν(λ) = 0 (2.16)

containing the eigenvalueshi of Hi . In the classical limit the equation (2.16) goes over into
the spectrality equation (2.9).

An important application of the spectrality property of BTs is that to the problem of
separation of variables[7, 8]. Again, it is instructive to start with the quantum case. A
separating operator̂K is, by definition, an operator, transforming the joint eigenfunctions
9ν of Hi into the product

K̂9ν = cν
n∏
i=1

φν(λi) (2.17)

of separated functionsφν(λ) of one variableλ satisfying the separation equation (2.16).
Since the coefficientscν in (2.17) can be chosen arbitrarily, abstractly speaking, there exist
infinitely many separating operatorŝK. The difficult problem, however, is to find the ones
which can be described as integral operators with explicitly given kernels.

Knowing a Q-operator gives one an immediate opportunity to construct plenty of
separating operators. Indeed, consider the operator productQ̂λ1...λn ≡ Q̂λ1 . . . Q̂λn having
the kernelQλ1...λn (y; x) and for any functionρ(y) introduce the operator

K̂ρ : 9(x)→
∫

dx
∫

dy ρ(y)Qλ1...λn (y; x)9(x). (2.18)

It is obvious from (2.15) thatK̂ρ is a separating operator, the coefficientscν being

cν =
∫

dy ρ(y)9ν(y). (2.19)

Since the eigenfunctions9ν(y) form a basis in the corresponding Hilbert space, the
formula (2.19) provides a one-to-one correspondence between reasonably chosen classes
of cν and ρ(y). Therefore, arguably, the formula (2.18) describes all possible separating
operators. Their kernelsKρ(λ; x) are given explicitly as multiple integrals

Kρ(λ; x) =
∫

dy
∫

dξ (1) . . .
∫

dξ (n−1)

×ρ(y)Qλ1(y; ξ (1))Qλ2(ξ
(1); ξ (2)) . . .Qλn(ξ

(n−1); x). (2.20)

It is a straightforward task to present the classical analogue of the above argument.
Consider the compositionBλ1...λn = Bλ1 ◦ . . . ◦ Bλn of Bäcklund transformations and the
corresponding generating functionFλ1...λn (y; x). Let us switch now the roles ofy’s andλ’s
treatingλ’s as dynamical variables andy’s as parameters. ThenFλ1...λn (y; x) becomes the
generating function of then-parametric canonical transformationKy from (X, x) to (µ, λ)
given by the equations

Xi = ∂Fλ1...λn

∂xi
µi = −∂Fλ1...λn

∂λi
. (2.21)

It follows directly from (2.9) that the pairs(λi, µi) satisfy the separation equations

W(λi, f (µi); {Hj }) = 0 (2.22)

which constitutes exactly the definition of the separating canonical transformation in the
classical case [7].
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The above construction corresponds in the quantum case to settingρ(y) = δ(y1 −
ȳ1) . . . δ(yn − ȳn) whereȳi are some constants. It remains an open question what could be
the classical analogue of the formula (2.18) for genericρ(y).

As the last general remark before passing to the examples, we would like to stress that for
the finite-dimensional systems the composition ofn BTs withn being the number of degrees
of freedom is a sort of ‘universal’ BT in the sense that any other canonical transformation
preserving the HamiltoniansHi must be expressible in terms ofBλ1...λn . To observe it one
can again use the fact that in the angle coordinateBλ acts as a shiftϕi → ϕi + bi(λ). For
genericbi(λ) the sumbi(λ1) + · · · + bi(λn) must then cover then-dimensional Liouville
torus which results in the universality ofBλ1...λn .

3. Periodic Toda lattice

Our first example is the periodic Toda lattice [12, 13] for which there exist two alternative
Lax operators associated, as we shall show, with two different BTs. The standard and quite
well studied BT [1, 10, 12, 14] which we denote here asBλ is associated, in the sense defined
in the previous section, to the 2× 2 Lax matrix (or, monodromy matrix [15])L(u;X, x)
defined as the product of localL-operators

L(u) = `n(u) . . . `2(u)`1(u) (3.1)

`i(u) ≡ `i(u;Xi, xi) =
(
u+Xi −exi

e−xi 0

)
. (3.2)

The characteristic polynomial ofL(u) is quadratic inv

W(u, v) ≡ det(v − L(u)) = v2− t (u)v + 1 (3.3)

and the commuting HamiltoniansHi are obtained from the expansion of the only non-trivial
spectral invariantt (u) ≡ trL(u)

t (u) = un +H1u
n−1+ · · · +Hn. (3.4)

In particular,

1

2
H 2

1 −H2 =
n∑
i=1

(
1

2
X2
i + exi+1−xi

)
(3.5)

is the standard periodic Toda Hamiltonian (in this section we use the periodicity convention
i + n ≡ i for the indicesi).

The B̈acklund transformationBλ is obtained from the generating function

Fλ(y; x) =
n∑
i=1

( exi−yi − eyi+1−xi − λ(xi − yi)) (3.6)

and, according to (2.3), is implicitly described by the equations

Xi = exi−yi + eyi+1−xi − λ Yi = exi−yi + eyi−xi−1 − λ. (3.7)

The characteristic properties of the BT are verified easily. Theinvariance of the
Hamiltonianscan be established using the equality [10]

Mi+1(u, λ)`i(u;Xi, xi) = `i(u;Yi, yi)Mi(u, λ) (3.8)

where

Mi(u, λ) ≡ Mi(u, λ; xi−1, yi) =
(

1 −eyi

e−xi−1 λ− u− eyi−xi−1

)
(3.9)



2246 V B Kuznetsov and E K Sklyanin

which one can verify directly using equations (3.7). Due to the periodic boundary
conditions, the local gauge transformation (3.8) results in the spectrum-preserving similarity
transformation

M1(u, λ)L(u;X, x) = L(u;Y, y)M1(u, λ) (3.10)

for L(u) which proves the invariance (2.4) of the Hamiltonians.
The direct proof of thecommutativity(2.5) of the BTs can be found in [1, 12, 14].
To prove thespectrality equality (2.9) which in this case takes the form det(e−µ −

L(λ)) = 0 we shall apply a modified version of the argument used in [2, 10] for the
quantum case. Note, first, that in our case

µ = −∂Fλ
∂λ
=

n∑
i=1

(xi − yi) (3.11)

as follows from (3.6) and (2.8). It suffices then to show that e−µ is an eigenvalue of the
matrix L(λ). We shall construct explicitly the corresponding eigenvectorω1

L(λ;X, x)ω1 = e−µω1. (3.12)

From (3.9) it follows that det(Mi(u, λ)) = λ − u. It is easy to see that foru = λ the
matrixMi(λ, λ) has the unique, up to a scalar factor, null-vector

ωi =
(

eyi

1

)
Mi(λ, λ)ωi = 0. (3.13)

Using the identity (3.10) we conclude that

M1(λ, λ)L(λ;X, x)ω1 = 0 (3.14)

which, combined with the uniqueness of the null-vectorω1 of M1, implies thatω1 is an
eigenvector ofL(λ;X, x). To determine the corresponding eigenvalue, we apply the same
argument to the identity (3.8) obtaining the equalityMi+1(λ; λ)`i(λ;Xi, xi)ωi = 0 from
which it follows that`i(λ;Xi, xi)ωi ∼ ωi+1. The direct calculation shows that

`i(λ;Xi, xi)ωi = eyi−xiωi+1. (3.15)

It only remains to use the formulae (3.1) and (3.11) to arrive finally at (3.12). Actually, we
could skip the discussion of null-vectors ofMi and derive (3.12) directly from (3.15). In
more complicated situations, however, it may be easier to findω as the null-vector ofM
and then to determine the corresponding eigenvalue ofL(λ).

Note that the vectorsωi are the classical counterparts of Baxter’s [11] vacuum vectors.
Let us now examine the alternative Lax operator [12, 13] given by then × n matrix

L(v;X, x) with the components

Ljk(v;X, x) = −Xjδjk + v−1/n exj−xk δj,k+1+ v1/nδj+1,k. (3.16)

The duality between the Lax operatorsL(v) andL(u) is expressed in the switching of
the roles of the parametersu andv. The characteristic polynomialW(v, u) ≡ det(u−L(v))
of the Lax operator (3.16) produces the same HamiltoniansHi and the same spectral curve
asW(u, v), as follows from the identity

det(v − L(u)) = −v det(u− L(v)). (3.17)

For other examples of similar duality, see [16].
The swapping ofu andv corresponds to switching the roles of the parametersλ andµ in

the BT. For the new B̈acklund transformationBµ associated with the Lax operatorL(v) the
formulae (3.6), (3.7) and (3.11) remain the same but their interpretation changes. The BT
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is parametrized now by the parameterµ which becomes a numerical constant. The equality
(3.11) is now reinterpreted as a constraint on the variablesxi andyi . The parameterλ is
reinterpreted, respectively, as the Lagrange multiplier for the constraint (3.11) and becomes
a dynamical variable which can be defined from the equations (3.7).

The characteristic properties of BTs are verified forBµ in very much the same manner
as forBλ. The invariance of the Hamiltoniansfollows from the invariance of the spectrum
of L(v) which, in turn, follows from the easily verified identity

M(v)L(v;X, x) = L(v;Y, y)M(v) (3.18)

with the matrixM(v) ≡M(v; x, y) given by its components

Mjk(v) = −δjk + v−1/n eyj−xk δj,k+1. (3.19)

Thecommutativity, as shown in section 2 follows from the canonicity and the invariance.
To prove thespectralityequality det(λ− L(e−µ)) = 0, it suffices, similarly to the case

of the Lax operatorL(u), to present the eigenvector� of the matrixL(e−µ) corresponding
to the eigenvalueλ

L(e−µ)� = λ�. (3.20)

Again,� can be determined as the null-vector ofM(e−µ)

M(e−µ)� = 0. (3.21)

Note that the uniqueness of� follows from the easily verified identity det
(
z −M(v)

) =
(z+1)n−v−1 e−µ which implies that the spectrum ofM(e−µ) consists ofn non-degenerate
eigenvalues, 0 being one of them. From (3.21) one easily derives the recurrence relation
for the components of�

�j = �j−1 exp
(
yj − xj−1+ µ

n

)
(3.22)

which determines� up to a constant factor. It remains to verify the identity (3.20) which
can be done by a direct calculation using the expressions (3.16) for the matrixL(v), (3.11)
for µ and (3.7) forXi .

4. Elliptic Ruijsenaars model

Our second example is the relativistic generalization due to Ruijsenaars [17] of the elliptic
Calogero–Moser [18] many-body system. For the non-relativistic Calogero–Moser system
a BT was found in [19]. In [5] a discrete-time dynamics was constructed for the elliptic
Ruijsenaars model. As we show later, the discrete-time evolution transformation found in
[5] has all the properties of a BT if the parameterp in [5] is specified in a proper way.

We use here the notation of [5] with a few exceptions: our parameterξ equals−λ from
[5], and our e−λ corresponds top from [5]. As in the case of the Toda lattice, there exist
two dual BTs:Bλ andBµ. The standard Lax operator for the Ruijsenaars model, as shown
later, is associated withBµ. Since the dual Lax operator is so far unknown, we describe
here only the transformationBµ.

Following [5, 8], we introduce the Lax operatorL(v;X, x) for then-particle (An−1 type)
Ruijsenaars system as then× n matrix with the entries

Lij (v) = −eXi
σ (ξ)σ (v + xi − xj − ξ)
σ (v)σ (xi − xj − ξ)

∏
k 6=i

σ (xi − xk + ξ)
σ (xi − xk) (4.1)

whereσ(x) is the Weierstrass sigma function andξ is a constant.
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The commuting Hamiltonians

Hi =
∑

J⊂{1,...,n}
|J |=i

exp

(∑
j∈J

Xj

) ∏
j∈J

k∈{1,...,n}\J

σ (xj − xk + ξ)
σ (xj − xk) i = 1, . . . , n (4.2)

are generated from the characteristic polynomial of the matrixL(v) (4.1)

det(L(v)− u) =
n∑
j=0

(−u)n−jHj σ (v − jξ)
σ (v)

(4.3)

where we assumeH0 ≡ 1.
The B̈acklund transformationBµ is given by the equations

eXi = e−λ
∏
j 6=i

σ (xi − xj − ξ)
σ (xi − xj + ξ)

n∏
k=1

σ(xi − yk + ξ)
σ (xi − yk) (4.4)

eYi = e−λ
n∏
k=1

σ(xk − yi + ξ)
σ (xk − yi) (4.5)

whereλ is considered as the Lagrange multiplier corresponding to the constraint

µ = nξ +
n∑
k=1

(xk − yk). (4.6)

Note here that the variableλ in formulae (4.4) and (4.5), describing the dicrete-time
dynamics, appeared asp in [5], but the conjugated variableµ did not. Notice also thatλ
was treated in [5] as an extra parameter, not as a Lagrange multiplier corresponding to a
constraint.

The generating function of the canonical transformationBµ is expressed in terms of the
function

S(x) =
∫ x

ln σ(y) dy (4.7)

as follows

Fλ(y; x) = −λ
n∑
i=1

(xi − yi + ξ)+
∑
i<j

(S(xi − xj − ξ)− S(xi − xj + ξ))

+
n∑

i,j=1

(S(xi − yj + ξ)− S(xi − yj )). (4.8)

The verification of the characteristic properties of the BT forBµ proceeds in the same
way as in the case of the Toda lattice.

The invariance of the HamiltoniansHi follows from the identity (see [5] for the proof)

M(v)L(v;X, x) = L(v;Y, y)M(v) (4.9)

where the matrixM(v) ≡M(v; x, y) is defined as

Mij (v) = σ(v + yi − xj − ξ)
σ (yi − xj − ξ)

∏
k 6=i

σ (yi − yk + ξ)
σ (yi − yk)

∏
k

σ (xk − yi + ξ)
σ (xk − yi) . (4.10)

The commutativity, as usual, is a consequence of canonicity and invariance (see
section 2).

To prove thespectrality equality which takes the form det(e−λ − L(µ)) = 0 it is
sufficient, like in the case of the Toda lattice, to find the eigenvector� of the matrixL(µ)
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corresponding to the eigenvalue e−λ. Let us show that, up to a constant multiplier, the
components of the eigenvector� are

�i =
∏n
k=1 σ(xi − yk + ξ)∏
k 6=i σ (xi − xk)

. (4.11)

The equality

L(µ)� = e−λ� (4.12)

or
n∑
j=1

Lij (µ)�j = e−λ�i (4.13)

after the substitutions (4.1) forLij , (4.6) forµ and (4.4) for eXi is reduced to the following
identity for sigma functions
n∑
j=1

σ(µ+ xi − xj − ξ)
n∏
k=1

σ(xj − yk + ξ)
∏
k 6=j

σ (xi − xk − ξ)
σ (xj − xk) = σ(µ)

n∏
k=1

σ(xi − yk).

(4.14)

Due to the symmetry, it is sufficient to prove (4.14) only fori = 1. Let i = 1 and
n > 2. Consider both sides of the equality (4.14) as functions ofxn. It is easy to see that
they are holomorphic inxn (the apparent poles in the left-hand side being cancelled) and
have the same quasi-periodicity properties. From the basic properties of sigma functions
[20] it follows that it is sufficient to verify the equality of left-hand side and right-hand side
only in one arbitrary pointxn = x̄ with the only conditionx̄ 6= µ−xn. Choosingx̄ = yn−ξ
we observe that (4.14) is reduced to the similar identity of ordern− 1. The proof follows
then by induction inn since the case whenn = 1 is trivial.

As in section 3, the vector� (4.11) is again the null-vector of the matrixM(µ), i.e.

M(µ)� = 0. (4.15)

The corresponding identity for sigma functions
n∑
j=1

σ(µ+ yi − xj − ξ)
∏
k 6=i σ (xj − yk + ξ)∏
k 6=j σ (xj − xk)

= 0 (4.16)

follows from the identity
n∑
j=1

∏n
k=1 σ(xj − zk)∏
k 6=j σ (xj − xk)

= 0 if
n∑
k=1

(zk − xk) = 0 (4.17)

(cf [20], p 451) when one substituteszk = yk − ξ for k 6= i andzi = µ+ yi − ξ .

5. Discussion

We have studied three new aspects of Bäcklund transformations. These are spectrality, dual
BTs and the application of BTs to the problem of separation of variables. As demonstrated
in section 2, the composition ofn BTs, being a ‘universal’ (n-parametric) BT, provides a
separation of variables which hasn arbitrary parameters, and thereby defines a ‘universal’
(n-parametric) family of separating transformations. The connection between the ‘universal’
BT and the ‘universal’ SoV is intriguing and has yet to be studied in detail.

Although we have discussed in the present paper the classical case only, our primary
motivation comes from the quantum case. The main problem in the quantum case is to
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construct Baxter’sQ-operator which is a quantum analogue of the Bäcklund transformation.
For the trigonometric case of the Ruijsenaars system, i.e. for the case of multivariable (An−1-
type) Macdonald polynomials, we have succeeded in describing explicitly such a quantum
analogue of the transformationBµ introduced in section 4. These results will be reported
elsewhere.
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